1. An oil is flowing down a vertical wall as a film 1.7 mm thick. The oil density is 820 $\mathrm{kg} / \mathrm{m}^{3}$ and the viscosity is 0.2 Pa.s. calculate the mass flow rate per unit width of wall.
a) $0.54 \mathrm{Kg} \mathrm{m}^{-1} . \mathrm{s}^{-1}$
b) $0.054 \mathrm{Kg} \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}$
c) $0.27 \mathrm{Kg} \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}$
d) $0.014 \mathrm{Kg} \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}$

Ans. B
2. In question 1 calculate Reynolds number?
a) 1.08
b) 10.80
c) 5.4
d) 1.28

Ans. A
3. In question 1 calculate average velocity of flow in m / s ?
a) 0.0037
b) 0.037
c) 0.028
d) 0.0028

Ans. b
4. The sphericity of cylinder with diameter 1 cm and height 1 cm is
a) 0.834
b) 0.874
c) 0.912
d) 0.956

Ans. b
5. If an object has the volume V_{p}, Diameter D_{p} and surface area S_{p}, then the sphericity of that object can be given as
a) $\frac{6 * V p}{D p * S p}$
b) $\frac{6 * \mathrm{Dp}}{\mathrm{Vp} * \mathrm{Sp}}$
c) $\frac{6 * \mathrm{Sp}}{\mathrm{Vp} * \mathrm{Dp}}$
d) None of the above

Ans. a
6. If $\varepsilon_{\mathrm{mf}}$ is the porosity of the bed at minimum fluidization then the height of the bed at minimum fluidization when there is no porosity can be find out as
a) $L^{*}\left(1-\varepsilon_{\mathrm{mf}}\right)$
b) $L /\left(1-\varepsilon_{\mathrm{mf}}\right)$
c) $\mathrm{L}^{*} \varepsilon_{\mathrm{mf}}$
d) $L / \varepsilon_{\mathrm{mf}}$

Ans. B
7. A plate heat exchanger is used to sterilize apple juice. The gap between the plates is 10 mm and of 3 m long. Assume density and viscosity of apple juice to be $1060 \mathrm{~kg} \mathrm{~m}^{-3}$ and 1×10^{-3} respectively. What is the average velocity in cm / s if the Reynolds Number is 1200 ?
a) 5.6
b) 11.2
c) 0.056
d) 0.112

Ans. a
8. Calculate the pressure drop in question 7.
a) 0.20 Pa
b) 20.16 Pa
c) 3.7 Pa
d) 0.37 Pa

Ans. B

